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Symplectic evolution of Wigner functions in Markovian open systems

O. Brodier* and A. M. Ozorio de Almeida†
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The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian.
If the system also interacts with the environment through Lindblad operators that are complex linear functions
of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical
propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the
consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner
function always becomes positive in a definite time, which does not depend on the initial pure state. We
observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact
formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability
distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth
of linear entropy. We finally discuss the possibility of recovering the initial state.
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I. INTRODUCTION

The correspondence between classical and quantum
chanics of closed dynamical systems is most perfect for q
dratic Hamiltonians. In this case, the classical evolution
linear, like its quantum counterpart, and generates an o
within the group of symplectic~linear, canonical! transfor-
mations in phase space@1#. These are directly linked to th
corresponding quantum metaplectic group@2#. Indeed, the
evolution operator in any of the usual representations
merely the complex exponential of the classical genera
function @3#. Of course, quadratic Hamiltonians are a ve
special case, but they include the ubiquitous harmonic os
lator, the parabolic potential barrier, and the free partic
which form adequate starting points for the analysis of m
complex motion.

The Weyl representation of an arbitrary quantum opera
Â is

A~x![E dq8K q1
q8

2
uÂuq2

q8

2 L expS 2 i
pq8

\ D , ~1!

that is, Â is represented in phase space,x5(p,q), by the
Weyl symbolA(x). The Wigner functionW(x) is then the
Weyl symbol for r̂/2p\, where r̂ is the density operator
Just as all Weyl symbols, the Wigner function propaga
classically under the action of a quadratic Hamiltonian@2,3#:

]

]t
Wt~x!5$H~x!,Wt~x!%, ~2!

introducing the classical Poisson bracket on the right-h
side@1# andH(x)5x•Hx, the Weyl symbol of the quadrati
Hamiltonian. The symbol• stands for the inner scalar prod
uct. Hence one hasWt(x)5W0(R2tx), where
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Rt5exp~2JHt ! ~3!

is the 232 matrix giving the classical Hamiltonian time evo
lution of a phase space pointx. Actually, this propagation is
also shared by the Fourier transform ofWt(x),

Ã~j!5
1

2p\E dx expS 2
i

\
j`xDA~x!, ~4!

i.e., it is also true that

]

]t
W̃t~j!5$H~j!,W̃t~j!%. ~5!

Note thatH(j) must be read literally as the classical Ham
tonianH(x) taken at the pointj5(jp ,jq), which is in gen-
eral different from the chord transformH̃(j) of H(x). In
other words, one has alsoW̃t(j)5W̃0(R2tj). Above we
have made use of the wedge product,

j`x[jpq2jqp[~Jj!Tx[Jj•x, ~6!

also defining the transpose of a vector (.)T and the matrixJ.
The semiclassical background for the symplectic invaria
of both the Wigner function and its Fourier transform is th
the Weyl phase space coordinatex may be associated to pair
of points in phase space,x6 , by x5(x11x2)/2. The con-
jugate variable to this center is the chordj5x12x2 . The
linear motion of both the chordj and the centerx is the same
as for each individual phase space pointx1 or x2 . We will
refer W̃(j) as the chord function as in Ref.@4#, though it is
also known as the characteristic function in quantum opt

The question that we address is to what extent can
simplicity and generality of symplectic motion of close
quantum systems be incorporated within the description
systems whose coupling to the environment cannot be
nored. In this case the evolution is no longer unitary, unl
the full Hamiltonian of the system combined with the env
ronment is taken into account. All the same, a certain m
©2004 The American Physical Society04-1
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sure of generality is restored by the assumption that the d
sity operator is governed by a Markovian master equa
@5#,

]r̂

]t
52

i

\
@Ĥ,r̂ #2

1

2\ (
j

2L̂ j r̂L̂ j
†2L̂ j

†L̂ j r̂2 r̂L̂ j
†L̂ j .

~7!

If a further assumption is made that each Lindblad opera
L̂ j is a linear function ofp̂ and q̂, we will show that the
evolution ofW̃t(j) is the product of the classically evolve
W̃0(j) with gt(j), a Gaussian centered onj50, which has
diminishing width. One can then generalize in a straightf
ward way the exact solution given by Agarwal@6# for the
Wigner function. This is a convolution of the Fourier tran
form of gt(j) with the classically evolvedW0(x). In other
words the Wigner function is coarse grained by a widen
Gaussian window.

A simple example of symplectic evolution of an ope
quantum system is that of a dust particle interacting with
molecules, or radiation, so that in the absence of gravityĤ
5 p̂2/2m and the interaction with the environment depen
basically on the particle’s position:L̂5hq̂, whereh is the
coupling parameter. This example is discussed by Giu
et al. in Ref. @7#. Another important example is that of a
optical field, say an arbitrary superposition of coherent sta
interacting with thermal photons. In terms of real variabl
the internal Hamiltonian is justĤ5v( p̂21q̂2)/2, i.e., the
harmonic oscillator. The Lindblad operators in this case
known to beg(n̄11)â/2 andgn̄â†/2, whereâ† and â are
the usual creation and annihilation operators,n̄ is the average
number of thermal photons at the frequencyv of the cavity
mode at temperatureT andg is the decay rate@8#.

Recently Diósi and Kiefer~DK! @9# showed in the case o
the first example that the Wigner function of any pure st
becomes positive within a definite time. Thus the Markov
interaction with the environment has the effect of erasing
interference fringes characteristic of quantum coherence
from then on the effect of coarse graining on the Wign
function is not distinguishable from that of a classical Lio
ville distribution. How general is the DK scenario? In Sec.
we present the exact solution of the Lindblad equation
general quadraticĤ and arbitrary complex linear Lindbla
operatorsL̂ j5l j q̂1m j p̂. In Sec. III we explain the underly
ing classical structure of the solution. Then, in Sec. IV,
use the properties of the convolution to generalize the p
tivity time of DK in the case of arbitrary quadratic Hami
tonian and non-Hermitian Lindblad operators. Furtherm
we make the much stronger statement that the Wigner fu
tion cannot be positive before this threshold, unless the
tial distribution is a Gaussian. We discuss the conseque
of this statement through the example of a bath of photo
In Sec. V we specify the behavior of the positivity thresho
for each type of quadratic Hamiltonian. It turns out tha
nonzero dissipation coefficient implies that positivity
reached exponentially fast. The positivity threshold is in g
eral inversely proportional to the dissipative coefficie
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However it becomes inversely proportional to the Lyapun
exponent if the latter is greater than this coefficient, that is
the case of a hyperbolic system~i.e., the inverted oscillator!
in the weak coupling limit. Then positivity can be reach
much faster than in the corresponding elliptic case~i.e., the
harmonic oscillator with the same coupling constant!.
Though all the formulas presented here are appropriate f
single degree of freedom, the generalization to higher dim
sions is discussed in this section. In Sec. VI we derive
general formula for the growth of the linear entropy (
2Trr̂ t

2), with respect to the initial density operators, for ea
choice of the quadratic master equation. We also show
for long times the growth of linear entropy attains a univer
form. Finally in Sec. VII we point out that this general sol
tion is obviously reversible, giving a very synthetic inversio
formula which generalizes previous work about quant
state reconstruction@10#.

The generalization of the convolution as exact solution
the master equation~7! whenĤ is not quadratic, or for non-
linear L̂ j , is not obvious. However, the approximate sem
classical theory developed by one of the present authors@11#
has no such constraint. Its compatibility with the prese
theory is the subject of a companion paper@12#. A simpler
version of the present work, for the restricted case of herm
ian L̂ j , can be accessed in Ref.@13#.

II. EXACT SOLUTION IN THE QUADRATIC CASE WITH
DISSIPATION

We derive here the exact solution of the Lindblad equ
tion in the case where the Hamiltonian is quadratic and
Lindblad operators are complex linear forms inq̂ and p̂.

Taking the Weyl-Wigner transform of Eq.~7!, i.e., associ-
ating the Weyl symbolA(x) to each operatorÂ, as defined in
Eq. ~1!, and using the product rules@14# for operators, we
obtain,

]Wt

]t
~x!5$H~x!,Wt~x!%1(

j
~Jl j9• l j8!

3Fx•
]Wt

]x
~x!12Wt~x!G

1
\

2 (
j

H Jl j8•S ]2Wt

]x2
~x!D Jl j8

1Jl j9•S ]2Wt

]x2
~x!D Jl j9J . ~8!

Here L j (x)5 l j8•x1 i l j9•x are the Weyl symbols of the non
Hermitian linear Lindblad operators. We use the notation

x5S p

qD and l85S l8

m8
D , l95S l9

m9
D . ~9!

It is well known that in this caseH(x) and L j (x) can be
identified as the classical variables corresponding toĤ and
4-2
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L ĵ . Note that ifl950 then the second term in Eq.~8! cancels.
It will become clear that this term is responsible for dissip
tion in the evolution ofWt(x) and we define the dissipatio
coefficienta5( j (Jl j9• l j8), which is zero in Ref.@13#.

It is actually easier to solve the evolution equation for t
chord functionW̃t(j),

]W̃t

]t
~j!5$H~j!,W̃t~j!%2aj•

]W̃t

]j
~j!

2
1

2\ (
j

@~ l j8•j!21~ l j9•j!2#W̃t~j!, ~10!

as derived in Appendix A. We guess a solution of the for

W̃t~j!5W̃0~j2t!expS 2
1

2\ (
j
E

0

t

@~ l j8•jt82t!
2

1~ l j9•jt82t!
2#dt8D , ~11!

wherejt is a linear evolution ofj, which will be expliciteda
posteriori, such that

j05j. ~12!

Then, inserting the form~11! of W̃t in Eq. ~10! and dividing
both sides by the exponential of Eq.~11! leads us to the
following left part:

2
]W̃0

]j
~j2t!• j̇2t2

1

2\ (
j

@~ l j8•j!21~ l j9•j!2#W̃0~j2t!

2
1

2\
W̃0~j2t!(

j
E

0

t

@2~ l j8•jt82t!l j8•~2 j̇t82t!

12~ l j9•jt82t!l j9•~2 j̇t82t!#dt8, ~13!

which must be equal to the following right part:

22JHj2t•
]W̃0

]j
~j2t!2aj2t•

]W̃0

]j
~j2t!

2
1

2\ (
j

@~ l j8•j!21~ l j9•j!2#W̃0~j2t!2
1

2\
W̃0~j2t!

3(
j
E

0

t

2@~ l j8•jt82t!l j8•~22JHjt82t2ajt82t!

1~ l j9•jt82t!l j9•~22JHjt82t2ajt82t!#dt8. ~14!

We have used

j•
]

]j
@W̃0~jt!#5jt•

]W̃0

]j
~jt!, ~15!

and
01620
- $H~j!,W̃t~j!%522JHj•
]W̃t

]j
~j!. ~16!

Hence the ansatz~11! is a solution of Eq.~10! if jt fulfills

j̇t52JHjt1ajt . ~17!

Thus, we can write explicitly

jt5eatRtj, ~18!

whereRt , defined in Eq.~3!, gives the purely Hamiltonian
evolution and the dissipation terma leads to a classical non
Hamiltonian expansion~a.0! or contraction~a,0! of the
chord variablej. One should be aware that although t
Hamiltonian part of the evolution ofj is shared with that of
the phase space pointx, the effect of dissipation is inverted
as it will be explained soon.

The argument of the exponential in Eq.~11! is a quadratic
form in j, so the solution can be written as

W̃t~j!5W̃0~j2t!expS 2
1

2\
j•M ~ t !jD ~19!

with M (t) a real, time dependent 232 matrix, which can
naturally be decomposed into

M ~ t !5(
j

M j~ t !5(
j
E

0

t

dt8e2a(t82t)Rt82t
T l j l j

TRt82t ,

~20!

so that each Lindblad operator contributes a Gaussian to
~19!.

Now, back into the Weyl-Wigner representation by usi
Eq. ~4!, one obtains the solution of Eq.~8!,

Wt~x!5
1

2p\
e2atE W0@eatR2t~x2y!#

1

AdetM J~ t !

3expS 2
1

2\
y•M J~ t !21yD dy, ~21!

where we have defined

M J~ t !52JM ~ t !J,

M J~ t !2152JM ~ t !21J ~22!

with the symplectic matrixJ defined in Eq.~6!. W0(x) is the
initial Wigner function and the convolution Gaussian tur
into a Diracd function ast goes to 0. We have equivalentl

Wt~x!5wt~x2t! ~23!

5
1

2p\AdetM J~ t !
E W0~y!

3expS 2
1

2\
~y2x2t!•M̃ ~ t !21~y2x2t! Ddy, ~24!
4-3
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with

xt5e2atRtx ~25!

and

M̃ ~ t !52e2atR2t
T JM ~ t !JR2t52M J~2t !. ~26!

Hence the solution is a convolution with a Gaussian wh
broadens in time, composed with a backwards n
Hamiltonian evolution of the phase space variablex. As
mentioned earlier, the Hamiltonian part of this classical e
lution is the same as in the chord space, whereas the d
pative part has the opposite effect: dissipation~a.0! will
shrink the phase space variable, and thus expand the d
bution Wt .

This solution, which has been derived in the case of
homogeneous quadratic Hamiltonian, can be generalized
ily to a quadratic Hamiltonian with a linear part. One th
has to be aware that the matrixRt , which appears in the
exponential Lindbladian damping, strictly corresponds to
classical motion of thechord, which is determined by the
homogeneouspart of the HamiltonianH. This remark is im-
portant, for instance, in the parabolic case, say a particle w
a linear potential, where the motion of the chord disrega
the potential.

SinceudetM̃ (t)u grows with time, one can conclude, fo
lowing DK @9#, that the solution~21! becomes positive afte
a certain time. Indeed it is, after rescaling the variable,
convolution of the initial Wigner function with a Gaussian
broadening size, which smoothes out oscillations aro
zero. It is the property of symplectic invariance of th
Wigner function that DK employ to prove strict positivity i
a specific case that is now extended to its broader con
Moreover we shall give in the much stronger result Sec,
that the Wigner function cannot be positive before the D
time, which does not depend on the initial pure state, un
it is a coherent state. We then give the general behavio
this positivity threshold for different dynamics in Sec.
namely whenH is elliptic, as for the harmonic oscillator
hyperbolic, as for the scattered particle, or in the parab
intermediate case which includes the system studied in
@9#. The following section explains the formal correspo
dence between this problem and a classical Brownian mo
described by a Langevin equation, as Agarwal@6# did for his
solution.

III. CLASSICAL CORRESPONDENCE

Since Eq.~8! is a Fokker-Planck equation, it can be inte
preted as the evolution equation for the probability distrib
tion of a classical Brownian motion defined by a Langev
equation. This correspondence gives a simple classical in
pretation of the problem. Hence the decoherence may
seen as a diffusion induced by some random force, and
sipation can be interpreted as a classical viscosity, althou
is always accompanied by another diffusive term. The o
feature which cannot be assigned a classical meaning is
Wigner function itself, which, as a pseudoprobability dist
bution, can have negative values.
01620
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One can check easily, see, for instance, Ref.@15#, that the
following Langevin equation:

ṗ52
]H

]q
~x!2ap1A\(

m
@lm8 f m~ t !1lm9 gm~ t !#,

q̇5
]H

]p
~x!2aq1A\(

m
@mm8 f m~ t !1mm9 gm~ t !#, ~27!

induces Eq. ~8! as a Fokker-Planck counterpart. Th
‘‘Brownian forces’’ f m(t) andgm(t) verify

^ f m~ t8! f n~ t9!&5dm,nd~ t82t9!,

^gm~ t8!gn~ t9!&5dm,nd~ t82t9!,

^ f m~ t8!gn~ t9!&50. ~28!

f m(t) correspond to the diffusion induced by the nondissip
tive real part of the Lindblad operators, whereasgm(t) cor-
respond to the diffusion induced by dissipation. It can eas
be verified that the Fokker-Planck equation is symplectica
invariant, so one is allowed to perform the following chan
of coordinates:

p̄5p2
a

2H11
q,

q̄5q, ~29!

to the above Langevin equation, which then turns into
following more intuitive form, where the dissipation depen
only on the momentum:

ṗ52
]H̄

]q
~x!2āp1A\(

m
@ l̄m8 f m~ t !1l̄m9 gm~ t !#,

q̇5
]H̄

]p
~x!1A\(

m
@mm8 f m~ t !1mm9 gm~ t !#. ~30!

Here, the matrix for the transformed HamiltonianH̄ is

S H11 H12

H12 H221
a214aH12

4H11

D , ~31!

l̄m8 5lm8 2(a/2H11)mm8 and, respectively, forl̄m9 , and ā
52a.

From this classical picture we can interpret the gene
behavior of the solution of the Lindblad equation. In the ca
of a closed system, remember that the Wigner function
dergoes a Liouville, unitary, propagation. Now the system
coupled to an environment, i.e., there are nonzero Lindb
operators. If dissipation of energy is neglected, these op
tors are Hermitian, so there is no imaginary part of the v
tors l. Then the effect of the environment over the system c
be interpreted as a diffusion process corresponding to
dom forces in the Langevin equation. Formally, it corr
4-4
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sponds to the initial Wigner function being convoluted with
Gaussian which broadens with time. If one now takes i
account the dissipation induced by the environment, allo
ing the Lindblad operator to be non-Hermitian, a visco
term appears in Eqs.~27! and~30!, meaning that the classica
trajectories on which the distribution travels are drifted
lesser or higher energy, according to the sign,1 or 2, of the
‘‘viscosity’’ a. Indeed, the dissipative linear motion govern
by the nonrandom terms of Eqs.~27! is just that of~25!. One
should be aware that it is only a formal classical scheme,
that the viscous term might have a purely quantum orig
For instance, in the case of photons in a cavity with dissi
tion, whose Lindblad operators are explained in Sec. V A,
viscosity is related to spontaneous emission, which bre
the symmetry between emission and absorption. Then
classical trajectories of the above equation spiral in towa
the origin, although a semiclassical theory would lead to
dissipation. The opposite case would be an amplified cav
where the trajectories would spiral out. Note that this visco
term always goes along with a supplement of diffusio
which can be interpreted as a consequence of the fluctua
dissipation ‘‘theorem’’@16#.

IV. UNIQUE POSITIVITY TIME FOR ANY INITIAL STATE

We have seen in Sec. II that, because of the Lindblad
part of the master equation, the pure state Wigner functio
convoluted with a Gaussian whose width grows with time
has been pointed out by DK@9# that at the timetp at which
the width of the Gaussian reaches\, that is, when it become
the Weyl representation of some coherent or squeezed s
then its convolution with the initial Wigner functionW0(x)
is a Husimi function@17,2,4# of the initial state, or aQ func-
tion in the language of quantum optics. It is a well know
property that the Husimi function is positive, so we ha
Wtp

>0, and obviously, since the Gaussian is strictly bro

ening,Wt.0 for t.tp . It has already been emphasized
Leonhardtet al. @18# that the form of the Wigner function
after interaction with a dissipative environment can be re
as an intermediate phase space distributionW(x,t50,s),
with an s which depends on the dissipation rate. Thuss50
corresponds to the~initial! Wigner function ands521 to
the Husimi function of DK~in Ref. @18# the role of the en-
vironment is played by the imperfections of a beam sepa
tor!.

We shall now prove that the Wigner function can never
positive before the positivity thresholdtp , unless it is posi-
tive from the beginning, that is, unless the initial state is
Gaussian state. Indeed, if an initial pure stateuc0& is not a
Gaussian, then it was shown by Tatarski� @19# that the initial
Wigner functionW0(x) has negative parts. But it is also tru
that non-Gaussian Husimi functions necessarily have zer
as shown in Appendix B. SinceWtp

is, up to a symplectic

transform, a Husimi function, there existsx0 such that

Wtp
~x0!50. ~32!

Let us now investigate the caset,tp . ThenWt(x) given by
Eq. ~24! is a convolution ofW0(x2t) with a Gaussian of
01620
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width smaller than\. The point is that one can then convo
lute again with exp@2(k/\)x2t•M̃ (t)21x2t#, with the real
parameterk chosen so that the output is also a Husimi fun
tion Q(x2t). To show this we refer to the simple gener
relation:

E dy exp@2~x2y!•M ~x2y!#exp~2y•kMy !

5
p

~11k!AdetM
expS 2x•

k

11k
Mx D . ~33!

This Husimi function can be identified withWtp
through a

symplectic transformx2t→x8, so we have

Q~x08!5E dy wt~x082y!expS 2
k

2\
y•M̃ ~ t !21yD50.

~34!

Now it is obvious from Eq.~34! that wt , henceWt , must
have a negative part for allt,tp .

Let us emphasize the striking consequence of this res
the positivity time does not depend on the initial distributio
as long as it is not a Gaussian one. The following exam
shall illustrate this remarkable property in a more transpar
way.

Example

We start from the familiar superposition of two cohere
states, i.e., ground states of the harmonic oscillator, displa
to the phase space pointsxz5(0,6z): uc0&5(uz&
1u2z&)/A2, in the context of photons in a cavity with dis
sipation. The Wigner function, which is a particular case
Eq. ~21!, is the sum of three terms; two of these correspo
to the coherent states taken independently, and the third
comes from their interference:

Wt~x!5Wz~x!1W2z~x!1Wi~x!, ~35!

with

Wz~x!5
2N

pb t
expS 2

2

b t
p2DexpS 2

2

b t
~q2e2gt/2z!2D

~36!

and

Wi~x!5
4N

pb t
expS 2

2

b t
~p21q2! D

3expF22S 12
e2gt

b t
D z2GcosS 4egt/2

b t
zpD , ~37!

where g, defined in the introduction, corresponds to 2a,
and b t52n̄@12exp(2gt)#11. The function is normalized
by N5@11exp(2z2/\)#21.Obviously the minimum values
are concentrated on the lineq50, where the expression sim
plifies into
4-5
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Wt~p,q50!5
4N

pb t
expS 2

2

b t
p2D FexpF22S 12

e2gt

b t
D z2G

3cosS 4egt/2

b t
zpD1expS 22

e2gt

b t
z2D G . ~38!

The Wigner function becomes positive when

12
e2gt

b t
5

e2gt

b t
, ~39!

that is, attp51/g ln@111/(2n̄11)#, which indeed does no
depend on the initial spacingz of the two coherent states. O
the other hand, the position (pm,0) of the closest zero, give
by the first minimum of the cosine at that time,

pm5
b t

4A2z
, ~40!

gets further away asz becomes smaller. This shows that t
negative regions that remain untiltp may be so shallow as
to be practically irrelevant.

The chord representation reveals how the positiv
threshold is related to a more reasonable estimate of the
coherence time. The expression of the initial chord funct
in our example is

W̃0~j!5
1

2p\
expS 2

j2

4\
D expS 2

i j`xz

\ D1c.c.

1
1

2p\
expS 2

~j2xz!
2

4\
D

1
1

2p\
expS 2

~j1xz!
2

4\
D . ~41!

The first two terms, distributed around the origin, correspo
to the two coherent states taken separately, whereas the
two terms, distributed aroundxz and 2xz , describe the
quantum interference between them. The positivity time c
responds to the moment when the Gaussian in Eq.~19!
damps everything outside a region of size\ in the chord
space. However, both interference terms in this example
be damped much sooner ifz is large enough, indicating a
overall loss of coherence.

It should be remarked that one just has to study a spe
example, here the twin coherent states, to get the posit
time for any non-Gaussian initial pure state.

V. BEHAVIOR OF THE POSITIVITY THRESHOLD

Positivity is attained when the determinant of the mat
M̃ (t), that is the determinant ofM (2t), is equal to 1/4.
Then the expression of the solution~24! is indeed a Husimi
01620
y
e-

n

d
last

r-

ill

c
ty

function. The matrixM is defined by Eq.~20!, so, to calcu-
late it, we notice thatJH, in the expression~3! of Rt , can be
diagonalized in most cases, that is when its two eigenva
are finite and different. We then define the matrixP such that

2JH5P21DP ~42!

with

D5S s 0

0 2s
D , ~43!

ands52A2detH. Note that sinceH is symmetric, thenJH
has a null trace, and so hasD. The dissipation parametera
ands are basic elements for the description of the evolut
of Markovian quadratic open systems.

Then, using Eq.~20! one can easily derive the expressio
of M ,

M ~ t !5PTS 12e22(s1a)t

2~a1s!
A11

12e22at

2a
A12

12e22at

2a
A21

12e2(s2a)t

2~a2s!
A22

D P,

~44!

whereA is defined by

A5~P21!T(
j

@ l j8~ l j8!T1 l j9~ l j9!T#P21. ~45!

The corresponding quadratic form actually depends on
classical motion of the chord, determined by the homo
neous partx•Hx of the Hamiltonian. One then has to sep
rate different cases: the elliptic case, detH.0, the parabolic
case, detH50, and the hyperbolic case, detH,0.

Since the Wigner function is symplectically invariant, on
just has to treat the simplest expression in each case, res
tively, the harmonic oscillator,H(x)5p2/21q2/2, the par-
ticle in a linear potential,H(x)5p2/21q, and the scattered
particle, H(x)5pq, which is symplectically equivalent to
p2/22q2/2.1

A. Harmonic oscillator

In this case, the Hamiltonian reads

H~x!5vS p2

2
1

q2

2 D ~46!

1The reduction of a linear Lindblad operator under a symplec
transformationx85Cx, is especially simple in the Wigner or in th
chord representation. If, instead of Eq.~9!, we setL j (x)5 ł j`x,
then the invariance is obtained by takingl j85Cl j . Of course, one
must also use the invariance of the classical HamiltonianH(x8)
5H(x).
4-6
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and the matrixP is

P5
1

A2
S 21 i

2 i 1D . ~47!

Then the determinant ofM (2t) reads
a
f
r

in
s
f

s

e

t-

01620
detM ~2t !5
e4at22e2atcos2vt11

4~a21v2!
A11A22

2
e4at22e2at11

4a2
A12A21, ~48!

where in this case the matrixA is complex:
A5
1

2 (
j

S ~l j8!22~m j8!212il jm j 2 i ~l j8!22 i ~m j8!2

2 i ~l j8!22 i ~m j8!2 2~l j8!21~m j8!212il jm j
D 1~ idem with l j9 and m j9!, ~49!
a
he
g

the

ly
si-

en-

re-

for
of

r
ion
by using Eq.~9!.
In the dissipative case, that, is fora.0, this determinant

diverges exponentially fast, and positivity is attained in
time of the order of 1/uau. Let us take for instance the bath o
photons, then the coefficients of the Lindblad operators a

l185S 0

Ag~ n̄11!

2
D , l195SAg~ n̄11!

2

0
D ,

l285S 0

Agn̄

2
D , l295S 2Agn̄

2

0
D , ~50!

and the frictiona5g/2. Then

detM ~2t !5
~egt21!2

4
~2n̄11!2, ~51!

which equals 1/4 att51/g ln(111/(2n̄11)), as wasprevi-
ously mentioned. Note that, although the coarse grain
grows for ever, the size of the Wigner distribution reache
finite limit, for the rescaled function~24! is the expression o
W(x) and notW(x2t).

If, on the other hand,a,0 then the determinant reache
its limit in a time also of the order of 1/uau. We conjecture
that this limit has a lower bound greater than 1/4. Here r
caling x2t→x now implies that Wt(x) spreads with no
bound.

B. Scattered particle

The simplest form of the Hamiltonian for a particle sca
tered by a parabolic barrier is

H~x!5vpq. ~52!

Then the matrixP is just identity and the matrixA is real, so
the determinant reads
e

g
a

s-

detM ~2t !5
e4at22e2atch2vt11

4~a22v2!
A11A22

2
e4at22e2at11

4a2
A12A21, ~53!

As long asa.2v it grows exponentially, so positivity is
always reached. Whena,2v the determinant has again
finite asymptotic value. Then the positivity threshold is of t
order of 1/~uau2v!, which is greater than the correspondin
elliptic case, with identical Lindblad operators.

The main difference with the elliptic case appears in
weak coupling limituau!v. Whereas positivity of the elliptic
system will then be attained in a time which is still inverse
proportional to the coupling with the environment, the po
tivity threshold of the hyperbolic system will saturate at 1/v.
We conjecture that this will also be the case in a more g
eral chaotic system.

C. Particle in a linear potential

We now study the intermediate case, which can be rep
sented by the Hamiltonian

H~x!5
p2

2
1q. ~54!

This degenerate case does not follow our general form
the matrixM , so one has to treat it separately, taking care
the linear term~cf. remark of Sec. II!. One should remembe
here that the motion of the chord is given by the free mot
of the particle, which corresponds to

Rt5S 1 0

t 1D . ~55!

Then the damping matrix is
4-7



M ~ t !5t(

e22at

2a
Q11

(2)2
1

2a
Q11

(0) e22at

2a
Q12

(1)2
1

2a
Q12

(0)

22at 22at , ~56!
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j S e

2a
Q12

(1)2
1

2a
Q12

(0) S e

2a
2

1

2a DQ22
(0)
D

h
ca

ity

2
0.

o
to
a

s-
d

om
Al
e
b

n

u-

we
whereQi j
(d) are the polynomials of degreed in t and of de-

gree 2 in the coupling constants, say (l j8 ,l j9 ,m j8 ,m j9). Let us
take for instance one Lindblad operator with (l8)T

5(0,AD8) and (l9)T5(eAD9,0), with e561. Then one has

detM ~2t !5
1

4 Fe4eD̄tS 11
1

4~D9!2D
2e2eD̄tS D8

D9
t21

1

2~D9!2
12D 111

1

4~D9!2G ,

~57!

with D̄5AD8D9. The limit is always greater than 1/4, wit
the usual exponential contrast between the dissipative
~e51! and the excited case~e521!. In Ref. @9#, DK study
this example with no dissipation, and they find a positiv
time of the order of 1/AD8. On the following table, one can
read different values of the positivity threshold forD852,
and check that the limitD9→0 is attained gradually:

D9 0 0.1 1 10 100

e521 0.930 0.640 0.244 0.077 0.02
e51 0.930 1.040 1.025 0.752 0.40

~58!

However for large values ofD9, the positivity threshold will
behave like 1/AD8D9.

So far the discussion has been restricted to the case
single degree of freedom. Besides trivial changes of fac
of 2p\, the basic form of the solutions of the Lindblad equ
tion in the chord representation~19! and for the Wigner func-
tion ~21! remain unchanged in the case ofn degrees of free-
dom. The evolution matrixRt now has the dimension (2n)
3(2n), but it can again be simplified by symplectic tran
formations. It will often decompose into blocks correspon
ing to the above examples. If every Lindblad vectorl j is
defined for a single block, then its contribution toM (t) will
be of the same form as that for a single degree of freed
but otherwise each case must be examined separately.
four-dimensional blocks may arise, corresponding to hyp
bolic spiral motion, as well as singular cases analyzed
Arnold @1#.

VI. THE GROWTH OF LINEAR ENTROPY

Besides considering the positivity of the Wigner functio
we can use the exact solution~19! to investigate the growth
of linear entropy
01620
se

f a
rs
-

-

,
so,
r-
y

,

St512Trr̂ t
2 . ~59!

This is only zero for a pure state, just as for the von Ne
mann entropy

St52Trr̂ tln r̂ t . ~60!

Since the solution is simpler in the chord representation,
make use of the following relations2 for operatorsÂ,B̂, . . .
represented by chord functionsÃ(j),B̃(j), . . .

Â→Ã~j!, ~61!

Â†→Ã~2j!* , ~62!

TrÂ5Ã~j50!, ~63!

TrÂB̂5
1

2p\E djÃ~j!B̃~2j!. ~64!

Therefore, usingr̂†5 r̂ and r̃ t(j)52p\ W̃t(j), we obtain

Trr t̂52p\ W̃t~j50!51, ~65!

and

Trr t̂
252p\E dj uW̃t~j!u2. ~66!

In the case of the solution~19! of the Lindblad equation, we
thus have

W̃0~j50!5
1

2p\
~67!

and

2p\ E dj uW̃0~j!u251 ~68!

if the initial state is pure.
After changing the variables of integration in Eq.~66!,

replacingj2t in Eq. ~19! by the initial chordj8, we obtain

Trr t̂
252p\e2atE dj8uW̃0~j8!u2expS 1

\
j8•M ~2t !j8D ,

~69!

2Note that there is a misprint in formula~6.24! of Ref. @4#.
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whereM (2t), defined in Eq.~20!, is negative definite.
Thus Trr t̂

2 is just the average of a rescaled Gauss
whose width narrows in time in a manner that depends
clusively on the particular form ofH(x) and the linear Lind-
blad operatorsL j (x). The initial state merely determines th
probability density employed in the calculation of the av
age. A general asymptotic behavior can be predicted for
formula, because the width of the Gaussian generally shr
ast grows. If the contraction is sufficient, the expression~69!
will tend to
th

t’’
o

ve

-
te
he
h

s

fo
t
ed
ta

s
y,
cs

01620
n
x-

-
is
ks

Trr t̂
2.2p\ e2at uW̃0~0!u2E dj expF 1

\
j•M ~2t !jG

.
p\e2at

AdetM ~2t !
, ~70!

by using Eq.~67!. It can be explained, using Eqs.~43! and
~44!, in terms of the dissipationa and the basic Hamiltonian
parameters:
Trr t̂
2.

p\

Ae24at22e22atS e2st1e22st

2
D 11

4~a21s2!
A11A222

e24at22e22at11

4a2
A12A21

. ~71!
m
uct-
ati-

er
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on
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e
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e
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If the underlying classical system is elliptic, Re~s!50, one
can distinguish two situations. In the excited case,a,0,
Trr t̂

2 converges to zero. In the dissipative case,a.0, it con-
verges to a finite value, which is not surprising since
system then reaches a thermal equilibrium@6#. For instance
in the case of a bath of photons, one has

Trr t̂
2→ 4p\

2n̄11
. ~72!

If the system is hyperbolic, the ‘‘Lyapunov exponen
v5Re~s!Þ0. The consequence is to shift the definition
the above dichotomy. Indeed, Trr t̂

2 has a nonzero limit in the
more restricted rangea.v.

The decoherence time, for the decay of Trr t̂
2, is in gen-

eral inversely proportional to the coupling strength. Howe
in the weak coupling limit,uau!v, it is 1/v in the hyperbolic
case, whereas it is 1/uau in the elliptic one. Hence the deco
herence time defined by the linear entropy is here consis
with the positivity threshold. This is a strong support to t
thesis that positive Lyapunov exponents accelerate deco
ence@20#.

The asymptotic formula~70! holds only for those case
where all the eigenvalues ofM (2t) tend to infinity. Coun-
terexamples are the elliptic case witha,0, since the deter-
minant then has a finite limit, and the hyperbolic case,
a,2v. Moreover, though2v,a,v leads to a determinan
which tends to infinity, one of the eigenvalues will inde
diverge whereas the other one, corresponding to the uns
direction, will have a finite limit.

VII. REVERSIBILITY OF THE SOLUTION

Although decoherence is usually associated with a los
information, which goes along with the growth of entrop
several techniques have been developed in quantum opti
e

f

r

nt

er-

r

ble

of

to

recover the initial information after interaction of the syste
with the environment. In general these consist of reconstr
ing the quantum state of a lossy cavity by using mathem
cal inversion formulas@10# or directly by experimental pro-
cesses@21#. We show here that the reversibility of the Wign
function results from the deconvolution of its evolution~24!,
or even simpler, as a division~19! in the chord space. Indeed
one has

W̃t~j!5W̃0~e2atR2tj!G̃t~j!, ~73!

which can easily be inverted as

W̃0~j!5
W̃t~eatRtj!

G̃t~eatRtj!
. ~74!

This is a generalization and a simplification of the inversi
formula of Ref.@10# since the loss induced by beam splitt
is a particular case of our general formalism.

VIII. CONCLUSION

The exact solution of the Markovian master equation
quadratic Hamiltonians and linear complex Lindblad ope
tors has been derived in the form of a convolution for t
Wigner function. This involves the classical evolution of th
initial Wigner function for the closed system with a pha
space Gaussian that is independent of this initial conditi
while its width expands in time, depending only on th
Hamiltonian and the Lindblad operators. This simple so
tion allows for the generalization of DK’s proof that th
Wigner function becomes positive within a definite timetp .
Furthermore we support the much stronger statement t
unless the initial distribution is already a coherent state,
Wigner function must have negative regions before that ti
4-9
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tp , which then does not depend on the initial state. In Sec
we have given the behavior oftp for three basic types o
motion of the quadratic Hamiltonian, namely, the elliptic, t
hyperbolic, and the parabolic case, verifying that positivity
always reached exponentially fast. The positivity threshol
generally of the order of 1/uau, except in the weak coupling
regimeuau!v of a hyperbolic system, where it is of the ord
of 1/v. One should note that the threshold becomes indep
dent on the Planck constant, if the Lindblad equation is
propriately scaled.

The Fourier transform of the exact solution, the cho
function, is even simpler. This is the product of two term
one is just the non-Hamiltonian classical evolution of t
initial chord function with dissipation and the other is aga
a Gaussian, but with narrowing width. This leads to a sim
formula for Trr̂2 as an average of a shrinking Gaussia
where the probability distribution used to calculate the me
is just the square modulus of the initial chord function. F
long times, we use the normalization condition that the ch
function is unity at the origin to derive simple rules for th
asymptotic growth Trr̂2 for a general quadratic Hamiltonian
This decays exponentially fast in a time which is of the sa
order as the positivity threshold. This result is compati
with the arguments presented by Zurek and Paz@20# for ex-
ponential growth of linear entropy for chaotic systems. Th
are classically characterized by local hyperbolicity, where
Lyapunov exponent describes the average effected by a
cal orbit that approaches many hyperbolic points. In contr
the hyperbolic quadratic Hamiltonian defines a linear cla
cal motion, but both will exponentially stretch the Wign
function. Of course, in a chaotic system, the result must
analyzed more deeply since the phase space volume rem
finite, which leads to a saturation of entropy even with
dissipation.

We finally point out a very simple inversion formul
which allows one to retrieve the initial state of the syste
which seems a very transparent way to deal with the top
of quantum state reconstruction.
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APPENDIX A: LINDBLAD EQUATION
IN THE CHORD SPACE

From the definition~4! of the chord transform,

W̃~j!5
1

2p\E dxexpS 2
i

\
j`xDW~x!, ~A1!

applied to the derivatives ofW and the product ofW with q
or p, we set the following transformation rules by using i
tegration by parts:

W→W̃,
01620
V

is

n-
-

:

e
,
n
r
d

e
e

e
e
pi-
t,
i-

e
ins

,
s

-
to

]W

]x
→ i

\
JjW̃,

xW→2
\

i
J
]W̃

]j
,

x•
]W

]x
→22W̃2j•

]W̃

]j
. ~A2!

By applying these rules on the following Poisson bracket

$H~x!,W~x!%52~H12p1H22q!
]W

]p
~x!

22~H11p1H12q!
]W

]q
~x!, ~A3!

we get

$H~x!,W~x!%→2~H12jp1H22jq!
]W̃

]jp
~x!

22~H11jp1H12jq!
]W̃

]jq
~x!, ~A4!

that is,

$H~x!,W~x!%→$H~j!,W̃~j!%. ~A5!

In the same way we get

l2
]2W

]q2
~x!1m2

]2W

]p2
~x!22lm

]2W

]p]q
~x!→2

1

\2
~ l•j!2W̃,

~A6!

hence the final equation~10! for W̃, with the help of the last
line of Eq. ~A2!.

APPENDIX B: ZEROES OF THE HUSIMI FUNCTION

Defining the complex variablez(x)5(q1 ip)/A2\, we
may express the coherent stateuz& @16# as

uz&5e2uzu2/2(
n50

`
zn

An!
un&, ~B1!

where un& are the eigenstates of the harmonic oscillat
Hence, the coherent state representation of any pure statuc&
can be expressed as

^zuc&5e2uzu2/2F~z* !, ~B2!

where

F~z!5 (
n50

`
zn

An!
^nuc& ~B3!
4-10
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is an entire function, known as the Bargmann function@22#.
Since the Husimi function is the square modulus of the
herent state representation, we obtain

Q~x!5u^z~x!uc&u25e2uzu2uF~z!u2. ~B4!

Thus the zeroes of the Husimi function coincide with t
zeroes of an analytic function. Indeed, we may define
stateuc& by its Bargmann representationF(z). An important
a priori restriction is thatF(z) is at most of orderr 52.

To see this, recall thatF(z) is of finite order if

uF~z!u,euzum ~B5!

for all sufficiently largeuzu and the order of this function is
r 5 infm for which Eq.~B5! holds. But if we use the fact tha
u^zuc&u2<1 in Eq. ~B4!, we obtain

uF~z!u<euzu2/2,euzu2, ~B6!
cs

s
,

01620
-

e

so r<2.
We now make use of the following
Theorem@23#: If F(z) is an entire function of finite orde

with no zeroes on the plane, then its order is necessarily
integer andF(z)5ePr (z), where Pr(z) is a polynomial of
order r.

In the case of the Bargmann function, thenPr(z) is at
most of second order and henceQ(x) given by Eq.~B4!
must be a Gaussian inp andq if it represents a normalized
function.

Thus, only Gaussian Husimi functions have no zeroes
the phase plane. To a great extent, positions of the isol
zeroes of the Husimi function also restrict the class of
missible pure states through the factorization theorems
Weierstrass and Hadamard@23#. The characterization of the
pure states as chaotic or regular by the pattern of zeroes
been extensively studied for the case where the phase s
is a torus, because the restriction is then more severe@24#.
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